重庆实验外国语学校2017-2018学年八年级下学期期末考试数学试题

适用年级:初二
试卷号:190954

试卷类型:期末
试卷考试时间:2019/6/11

1.单选题(共10题)

1.
﹣2018的倒数是(  )
A.2018B.﹣C.D.﹣2018
2.
估计的运算结果在哪两个整数之间(  )
A.3和4B.4和5C.5和6D.6和7
3.
计算(﹣a)2•a3的结果正确的是(  )
A.﹣a6B.a6C.﹣a5D.a5
4.
下列图形都是由同样大小的黑、白圆按照一定规律组成的,其中第①个图形中一共有2个白色圆,第②个图形中一共有8个白色圆,第③个图形中一共有16个白色圆,按此规律排列下去,第⑦个图形中白色圆的个数是(  )
A.96B.86C.68D.52
5.
已知x(x﹣2)=3,则代数式2x2﹣4x﹣7的值为(  )
A.6B.﹣4C.13D.﹣1
6.
若分式有意义,则x满足的条件是(  )
A.x≠1的实数B.x为任意实数C.x≠1且x≠﹣1的实数D.x=﹣1
7.
若关于x的不等式组有且仅有5个整数解,且关于y的分式方程有非负整数解,则满足条件的所有整数a的和为(  )
A.12B.14C.21D.33
8.
如图所示,四边形OABC是矩形,△ADE是等腰直角三角形,∠ADE=90°,点A,D在x轴的正半轴上,点C在y轴的正半轴上,点B、E在反比例函数y=(x>0)的图象上.△ADE的面积为,且AB=DE,则k值为(  )
A.18B.C.D.16
9.
下列调查中,调查方式选择合理的是(  )
A.调查你所在班级同学的身高,采用抽样调查方式
B.调查市场上某品牌电脑的使用寿命,采用普查的方式
C.调查嘉陵江的水质情况,采用抽样调查的方式
D.要了解全国初中学生的业余爱好,采用普查的方式
10.
下列命题中,是假命题的是(  )
A.四个角都相等的四边形是矩形
B.正方形的对角线所在的直线是它的对称轴
C.对角线互相平分且平分每一组对角的四边形是菱形
D.一组对边相等,另一组对边平行的四边形是平行四边形

2.选择题(共2题)

11.亚洲地势特点是(    )
12.亚洲地势特点是(    )

3.填空题(共6题)

13.
2018年6月1日,美国职业篮球联赛(NBA)总决赛第一场在金州勇士队甲骨文球馆进行.据统计,当天通过腾讯视频观看球赛的人数突破5250万.用科学记数法表示“5250”为_____.
14.
因式分解:    
15.
关于x的一元二次方程x2﹣2x+m=0有两个实数根,则m的取值范围是_____.
16.
小天家、小亮家、学校依次在同一条笔直的公路旁(各自到公路的距离忽略不计),每天早上7点整小天都会从家出发以每分钟60米的速度走到距他家600米的小亮家,然后两人以小天同样的速度准时在7:30到校早读.某日早上7点过,小亮在家等小天的时候突然想起今天轮到自己值日扫地了,所以就以每分钟60米的速度先向学校走去,后面打算再和小天解释,小天来到小亮家一看小亮不在家,立刻想到小亮今天是值日生(停留及思考时间忽略不计),于是他就以每分钟100米的速度去追小亮,两人之间的距离y(米)及小亮出发的时间x(分)之间的函数关系如下图所示.请问当小天追上小亮时离学校还有_____米.
17.
如图,把正方形纸片对折得到矩形ABCD,点E在BC上,把△ECD沿ED折叠,使点C恰好落在AD上点C′处,点M、N分别是线段AC′与线段BE上的点,把四边形ABNM沿NM向下翻折,点A落在DE的中点A′处.若原正方形的边长为12,则线段MN的长为_____.
18.
小张将自己家里1到6月份的用电量统计并绘制成了如图所示的折线统计图,则小张家1到6月份这6个月用电量的众数与中位数的和是_____度.

4.解答题(共7题)

19.
(1)|﹣3|+2sin45°﹣+(﹣1
(2)()÷
20.
(1)解分式方程:
(2)解方程:3x2﹣8x+5=0
21.
在每年五月第二个星期日的母亲节和每年六月第三个星期日的父亲节这两天,很多青少年会精心准备小礼物和贺卡送给父母,以感谢父母的养育之恩.某商家看准商机,在今年四月底储备了母亲节贺卡A、B和父亲节贺卡C、D共2500张.
(1)按照往年的经验,该商家今年母亲节贺卡的储备量至少应定为父亲节贺卡的1.5倍,求该商家今年四月底至多储备了多少张父亲节贺卡.
(2)截至今年6月30日,母亲节贺卡A、B的销售总金额和父亲节贺卡C、D的销售总金额相同.已知母亲节贺卡A的销售单价为20元,共售出150张,贺卡B的销售单价为2元,共售出1000张;父亲节贺卡C的销售单价比贺卡A少m%,但是销售量与贺卡A相同,贺卡D的销售单价比贺卡B多4m%,销售量比贺卡B少m%,求m的值.
22.
如图,反比例函数y=(n为常数,n≠0)的图象与一次函数y=kx+8(k为常数,k≠0)的图象在第三象限内相交于点D(﹣,m),一次函数y=kx+8与x轴、y轴分别相交于A、B两点.已知cos∠ABO=
(1)求反比例函数的解析式;
(2)点P是x轴上的动点,当△APC的面积是△BDO的面积的2倍时,求点P的坐标.
23.
如图,直线y=﹣x+3与x轴相交于点B,与y轴相交于点A,点E为线段AB中点,∠ABO的平分线BD与y轴相较于点D,点A、C关于点O对称.
(1)求线段DE的长;
(2)一个动点P从点D出发,沿适当的路径运动到直线BC上的点F,再沿射线CB方向移动2个单位到点G,最后从点G沿适当的路径运动到点E处,当P的运动路径最短时,求此时点G的坐标;
(3)将△ADE绕点A顺时针方向旋转,旋转角度α(0<α≤180°),在旋转过程中DE所在的直线分别与直线BC、直线AC相交于点M、点N,是否存在某一时刻使△CMN为等腰三角形,若存在,请求出CM的长,若不存在,请说明理由.
24.
在△BCF中,点D是边CF上的一点,过点D作AD∥BC,过点B作BA∥CD交AD于点A,点G是BC的中点,点E是线段AD上一点,且∠CDG=∠ABE=∠EBF.
(1)若∠F=60°,∠C=45°,BC=2,请求出AB的长;
(2)求证:CD=BF+DF.
25.
如图,在△ABC中AB=AC.在△AEF中AE=AF,且∠BAC=∠EA
A.求证:∠AEB=∠AFC.
试卷分析
  • 【1】题量占比

    单选题:(10道)

    选择题:(2道)

    填空题:(6道)

    解答题:(7道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:2

    5星难题:0

    6星难题:8

    7星难题:0

    8星难题:6

    9星难题:7