1.单选题- (共9题)
4.
如图是甲、乙两个探测气球所在位置的海拔y(单位:m),关于上升时间x(单位:min)的函数图象.有下列结论:
①当x=10时,两个探测气球位于同一高度
②当x>10时,乙气球位置高;
③当0≤x<10时,甲气球位置高
其中,正确结论的个数是( )

①当x=10时,两个探测气球位于同一高度
②当x>10时,乙气球位置高;
③当0≤x<10时,甲气球位置高
其中,正确结论的个数是( )

A.3个 | B.2个 | C.1个 | D.0个 |
5.
如图,在平面直角坐标系中,四边形ABCD是菱形,点A的坐标为(0,
),分别以A,B为圆心,大于
AB的长为半径作弧,两弧交于点E,F,直线EF恰好经过点D,则点D的坐标为( )




A.(2,2) | B.(2,![]() | C.(![]() | D.(![]() ![]() |
8.
某中学规定学生的学期体育成绩满分为100,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小明的三项成绩(百分制)依次是90,80,94,小明这学期的体育成绩是( )
A.88 | B.89 | C.90 | D.91 |
9.
如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是( )


A.四边形ABCD由矩形变为平行四边形 ![]() | B.BD的长度增大 |
C.四边形ABCD的面积不变 | D.四边形ABCD的周长不变 |
2.填空题- (共3题)
3.解答题- (共8题)
14.
某学校计划购进A,B两种品牌的足球共50个,其中A品牌足球的价格为100元/个,购买B品牌足球所需费用y(单位:元)与购买数量x(单位:个)之间的关系如图所示
(1)请直接写出y与x之间的函数解析式;
(2)若购买B种品牌足球的数量不超过30个,但不少于A种品牌足球的数量,请设计购买方案,使购买总费用W(单位:元)最低,并求出最低费用.
(1)请直接写出y与x之间的函数解析式;
(2)若购买B种品牌足球的数量不超过30个,但不少于A种品牌足球的数量,请设计购买方案,使购买总费用W(单位:元)最低,并求出最低费用.

15.
如图,在平面直角坐标系中,直线y=
x+2与x轴、y轴的交点分别为A、B,直线y=﹣2x+12交x轴于C,两条直线的交点为D;点P是线段DC上的一个动点,过点P作PE⊥x轴,交x轴于点E,连接BP;
(1)求△DAC的面积;
(2)在线段DC上是否存在一点P,使四边形BOEP为矩形;若存在,写出P点坐标;若不存在,说明理由;
(3)若四边形BOEP的面积为S,设P点的坐标为(x,y),求出S关于x的函数关系式,并写出自变量x的取值范围.

(1)求△DAC的面积;
(2)在线段DC上是否存在一点P,使四边形BOEP为矩形;若存在,写出P点坐标;若不存在,说明理由;
(3)若四边形BOEP的面积为S,设P点的坐标为(x,y),求出S关于x的函数关系式,并写出自变量x的取值范围.

16.
某水果批发市场规定,一次购买苹果不超过100kg(包括100kg),批发价为5元,如果一次购买100kg以上苹果,超过100kg的部分苹果价格打8折.
(I)请填写下表
(Ⅱ)写出付款金额关于购买量的函数解析式;
(Ⅲ)如果某人付款2100元,求其购买苹果的数量.
(I)请填写下表
购买量/kg | 0 | 50 | 100 | 150 | 200 | … |
付款金额/元 | 0 | 250 | _ | 700 | __ | … |
(Ⅱ)写出付款金额关于购买量的函数解析式;
(Ⅲ)如果某人付款2100元,求其购买苹果的数量.
17.
已知图中的每个方格都是边长为1的小正方形,每个小正方形的顶点称为格点,△ABC的顶点在格点上,称为格点三角形,请按要求完成下列各题
(1)填空:
AB= ,BC= ,AC= ;
(2)试判断△ABC的形状,并说明理由.
(1)填空:
AB= ,BC= ,AC= ;
(2)试判断△ABC的形状,并说明理由.

18.
小梅在浏览某电影评价网站时,搜索了最近关注到的甲、乙、丙三部电影,网站通过对观众的抽样调查,得到这三部电影的评分数据统计图分别如下:
甲、乙、丙三部电影评分情况统计图


根据以上材料回答下列问题:
(1)小梅根据所学的统计知识,对以上统计图中的数据进行了分析,并通过计算得到这三部电影抽样调查的样本容量,观众评分的平均数、众数、中位数,请你将下表补充完整:
甲、乙、丙三部电影评分情况统计表
(2)根据统计图和统计表中的数据,可以推断其中_______电影相对比较受欢迎,理由是
_______________________________________________________________________.(至少从两个不同的角度说明你推断的合理性)
甲、乙、丙三部电影评分情况统计图




根据以上材料回答下列问题:
(1)小梅根据所学的统计知识,对以上统计图中的数据进行了分析,并通过计算得到这三部电影抽样调查的样本容量,观众评分的平均数、众数、中位数,请你将下表补充完整:
甲、乙、丙三部电影评分情况统计表
电影 | 样本容量 | 平均数 | 众数 | 中位数 |
甲 | 100 | 3.45 | | 5 |
乙 | | 3.66 | 5 | |
丙 | 100 | | 3 | 3.5 |
(2)根据统计图和统计表中的数据,可以推断其中_______电影相对比较受欢迎,理由是
_______________________________________________________________________.(至少从两个不同的角度说明你推断的合理性)
19.
如图,正方形ABCD的对角线AC,BD相交于点O,将BD向两个方向延长,分别至点E和点F,且使BE=DF.
(1)求证:四边形AECF是菱形;
(2)若AC=4,BE=1,直接写出菱形AECF的边长.
(1)求证:四边形AECF是菱形;
(2)若AC=4,BE=1,直接写出菱形AECF的边长.

试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(3道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:8
7星难题:0
8星难题:3
9星难题:9