1.单选题- (共3题)
3.
如图,在四边形ABCD中,AC与BD相交于点O,AD∥BC,AC=BD,那么下列条件中不能判定四边形ABCD是矩形的是( )


A.AD=BC | B.AB=CD | C.∠DAB=∠ABC | D.∠DAB=∠DCB |
2.选择题- (共1题)
3.填空题- (共8题)
10.
如图,平行四边形ABCD中,∠B=60°,AB=8cm,AD=10cm,点P在边BC上从B向C运动,点Q在边DA上从D向A运动,如果P,Q运动的速度都为每秒1cm,那么当运动时间t=_____秒时,四边形ABPQ是直角梯形.

4.解答题- (共8题)
15.
闵行区政府为残疾人办实事,在道路改造工程中为盲人修建一条长3000米的盲道,根据规划设计和要求,某工程队在实际施工中增加了施工人员,每天修建的盲道比原计划多250米,结果提前2天完成工程,问实际每天修建盲道多少米.
16.
已知弹簧在一定限度内,它的长度y(厘米)与所挂重物质量x(千克)是一次函数关系.
下表中记录的是两次挂不同重量重物的质量(在弹性限度内)与相对应的弹簧长度:
求不挂重物时弹簧的长度.
下表中记录的是两次挂不同重量重物的质量(在弹性限度内)与相对应的弹簧长度:
所挂重物质量x(千克) | 2.5 | 5 |
弹簧长度y(厘米) | 7.5 | 9 |
求不挂重物时弹簧的长度.
17.
已知点P(1,m)、Q(n,1)在反比例函数y=
的图象上,直线y=kx+b经过点P、Q,且与x轴、y轴的交点分别为A、B两点.
(1)求k、b的值;
(2)O为坐标原点,C在直线y=kx+b上且AB=AC,点D在坐标平面上,顺次联结点O、B、C、D的四边形OBCD满足:BC∥OD,BO=CD,求满足条件的D点坐标.

(1)求k、b的值;
(2)O为坐标原点,C在直线y=kx+b上且AB=AC,点D在坐标平面上,顺次联结点O、B、C、D的四边形OBCD满足:BC∥OD,BO=CD,求满足条件的D点坐标.
18.
如图,已知正方形ABCD的边长为3,菱形EFGH的三个顶点E、G、H分别在正方形的边AB、CD、DA上,AH=1,联结CF.
(1)当DG=1时,求证:菱形EFGH为正方形;
(2)设DG=x,△FCG的面积为y,写出y关于x的函数解析式,并指出x的取值范围;
(3)当DG=
时,求∠GHE的度数.
(1)当DG=1时,求证:菱形EFGH为正方形;
(2)设DG=x,△FCG的面积为y,写出y关于x的函数解析式,并指出x的取值范围;
(3)当DG=


试卷分析
-
【1】题量占比
单选题:(3道)
选择题:(1道)
填空题:(8道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:14
7星难题:0
8星难题:4
9星难题:1