1.单选题- (共10题)
2.
《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是( )
A.
B.
C.
D. 
A.




5.
如图,动点P在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过2017次运动后,动点P的坐标为( )


A.(2017,1) | B.(2017,0) | C.(2017,2) | D.(2016,0) |
8.
如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是( )


A.∠BAO与∠CAO相等 | B.∠BAC与∠ABD互补 |
C.∠BAO与∠ABO互余 | D.∠ABO与∠DBO不等 |
9.
中国共产党第十九次全国代表大会(简称党的十九大)于2017年10月18日至10月24日在北京召开,我区为了了解学生对“党的十九大”的知晓情况,从全区2400名学生中随机抽取了100名学生进行调查,在这次调查中,样本是( )
A.2400名学生 | B.100名学生 | C.所抽取的100名学生对“党的十九大”的知晓情况 | D.每一名学生对“党的十九大”的知晓情况 |
10.
为丰富学生课外活动,某校积极开展社团活动,学生可根据自己的爱好选择一项,已知该校开设的体育社团有:A:篮球,B:排球C:足球;D:羽毛球,E:乒乓球.李老师对某年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是( )


A.选科目E的有5人 |
B.选科目D的扇形圆心角是72° |
C.选科目A的人数占体育社团人数的一半 |
D.选科目B的扇形圆心角比选科目D的扇形圆心角的度数少21.6° |
2.填空题- (共8题)
14.
《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上一只鸽子对地上觅食的鸽子说:“若从你们中飞来一只,则树下的鸽子就是整个鸽群的
;若从树上飞下去一只,则树上,树下的鸽子数一样多.”你知道树上树下共有______只.

15.
中考刚刚结束,有四位老师携带试卷乘坐电梯,这四位老师的体重共270kg,每捆试卷重20kg,电梯的最大负荷为1050kg,则该电梯在这四位老师乘坐的情况下最多还能搭载_____捆试卷.
18.
我区移动公司为了调查手机发送短信息的情况,在本区域的120位用户中抽取了10位用户来统计他们某周发信息的条数,结果如下表:
本次调查中这120位用户大约每周一共发送______ 条短信息.
手机用户序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
发送短信息条数 | 20 | 19 | 20 | 20 | 21 | 17 | 15 | 23 | 20 | 25 |
本次调查中这120位用户大约每周一共发送
3.解答题- (共6题)
21.
为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.
(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?
(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担,若国家财政拨付资金不超过11800万元,地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校改扩建资金分别为每所300万元和500万元,请问共有哪几种改扩建方案?
(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?
(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担,若国家财政拨付资金不超过11800万元,地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校改扩建资金分别为每所300万元和500万元,请问共有哪几种改扩建方案?
22.
如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.
(1)探究猜想:①若∠A=30°,∠D=40°,则∠AED等于多少度?
②若∠A=20°,∠D=60°,则∠AED等于多少度?
③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.
(2)拓展应用:如图2,线段FE与长方形ABCD的边AB交于点E,与边CD交于点F.图2中①②分别是被线段FE隔开的2个区域(不含边界),P是位于以上两个区域内的一点,猜想∠PEB,∠PFC,∠EPF的关系(不要求说明理由).
(1)探究猜想:①若∠A=30°,∠D=40°,则∠AED等于多少度?
②若∠A=20°,∠D=60°,则∠AED等于多少度?
③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.
(2)拓展应用:如图2,线段FE与长方形ABCD的边AB交于点E,与边CD交于点F.图2中①②分别是被线段FE隔开的2个区域(不含边界),P是位于以上两个区域内的一点,猜想∠PEB,∠PFC,∠EPF的关系(不要求说明理由).

试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(8道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:7
5星难题:0
6星难题:9
7星难题:0
8星难题:1
9星难题:7