1.单选题- (共8题)
1.
现有一列数:a1,a2,a3,a4,…,an-1,an(n为正整数),规定a1=2,a2- a1=4,
,…,
(n≥2),若
,则n的值为( ).



A.2015 | B.2016 | C.2017 | D.2018 |
6.
某公司员工分别住在A、B、C三个住宅区,A区有60人,B区有30人,C区有20人,三个区在同一条直线上,如图.该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在( )


A.A区 | B.B区 | C.C区 | D.A、B两区之间 |
2.选择题- (共2题)
3.填空题- (共9题)
11.
如图,A点的初始位置位于数轴上表示1的点,现对A点做如下移动:第1次向左移动3个单位长度至B点,第2次从B点向右移动6个单位长度至C点,第3次从C点向左移动9个单位长度至D点,第4次从D点向右移动12个单位长度至E点,…,依此类推.这样第_____次移动到的点到原点的距离为2018.

4.解答题- (共7题)
21.
教科书中这样写道:“我们把多项式a2+2ab+b2及a2-2ab+b2叫做完全平方式.”如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值、最小值等.
例如:分解因式x2+2x-3=(x2+2x+1)-4=(x+1)2-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1);
例如求代数式2x2+4x-6的最小值,2x2+4x-6=2(x2+2x-3)=2(x+1)2-8,可知当
时,
有最小值,最小值是
.
根据阅读材料用配方法解决下列问题:
(1)分解因式:m2-4m-5= .
(2)当a,b为何值时,多项式a2+b2-4a+6b+18有最小值,并求出这个最小值.
(3)当a,b为何值时,多项式a2-2ab+2b2-2a-4b+27有最小值,并求出这个最小值.
例如:分解因式x2+2x-3=(x2+2x+1)-4=(x+1)2-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1);
例如求代数式2x2+4x-6的最小值,2x2+4x-6=2(x2+2x-3)=2(x+1)2-8,可知当



根据阅读材料用配方法解决下列问题:
(1)分解因式:m2-4m-5= .
(2)当a,b为何值时,多项式a2+b2-4a+6b+18有最小值,并求出这个最小值.
(3)当a,b为何值时,多项式a2-2ab+2b2-2a-4b+27有最小值,并求出这个最小值.
24.
某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.
(1)该种干果的第一次进价是每千克多少元?
(2)超市销售这种干果共盈利多少元?
(1)该种干果的第一次进价是每千克多少元?
(2)超市销售这种干果共盈利多少元?
试卷分析
-
【1】题量占比
单选题:(8道)
选择题:(2道)
填空题:(9道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:3
5星难题:0
6星难题:11
7星难题:0
8星难题:4
9星难题:6