山东省青岛市李沧区2018-2019学年八年级上学期期末考试数学试卷

适用年级:初二
试卷号:184463

试卷类型:期末
试卷考试时间:2019/2/6

1.单选题(共8题)

1.
9的平方根是(  )
A.±3B.3C.81D.±81
2.
xy为实数,且+(y-2)2=0,则xy的值为(  )
A.3B.2C.1D.-1
3.
现用190张铁皮制作一批盒子,每张铁皮可做8个盒身或做22个盒底,而一个盒身和两个盒底配成一个完整的盒子.问用多少张白铁皮制盒身、多少张白铁皮制盒底,可以使盒身和盒底正好配套.设用x张铁皮做盒身,y张铁皮做盒底,可以使盒身与盒底正好配套,则可列方程是(  )
A.B.C.D.
4.
小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是(  )

A. (﹣2,1) B. (﹣1,1) C. (1,﹣2) D. (﹣1,﹣2)
5.
Ax1y1)和Bx2y2)都在直线y=−3x+2上,且x1x2,则y1y2的关系是(  )
A.y1y2B.y1y2C.y1y2D.y1y2
6.
某中学随机调查了15名学生,了解他们一周在校参加体育锻炼的时间,列表如下:
锻炼时间(小时)
5
6
7
8
人数
2
6
5
2
 
则这15名同学一周在校参加体育锻炼的时间的中位数和众数分别为(  )
A.6,7B.7,7C.7,6D.6,6
7.
下面四组数据中,不能作为直角三角形的三边长是(   )
A.6、8、10B.7、24、25C.2、5、7D.9、12、15
8.
如图,在平面直角坐标系中,直线l1与直线l2交于点A(,b),则关于x、y的方程组的解为(   )
A.B.C.D.

2.填空题(共4题)

9.
计算+×的结果是_____.
10.
根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于(________)
11.
如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是_____.
12.
某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表:
候选人


测试成绩(百分制)
面试
86
92
笔试
90
83
 
如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权。根据两人的平均成绩,公司将录取___.

3.解答题(共9题)

13.
甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:

(1)甲登山上升的速度是每分钟    米,乙在A地时距地面的高度b为    米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;
(3)登山多长时间时,甲、乙两人距地面的高度差为70米?
14.
(1) (2)
(3)解方程组
15.
某班为准备半期考表彰的奖品,计划从友谊超市购买笔记本和水笔共40件.在获知某网店有“双十一”促销活动后,决定从该网店购买这些奖品.已知笔记本和水笔在这两家商店的零售价分别如下表,且在友谊超市购买这些奖品需花费90元.求从网店购买这些奖品可节省多少元.
品 名
商 店
笔记本
(元/件)
水笔
(元/件)
友谊超市
2.4
2
网   店
2
1.8
 
16.
某文具商店销售功能相同的AB两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.
(1)求这两种品牌计算器的单价;
(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器超出5个的部分按原价的七折销售,设购买xA品牌的计算器需要y1元,购买xx>5)个B品牌的计算器需要y2元,分别求出y1y2关于x的函数关系式;
(3)当需要购买50个计算器时,买哪种品牌的计算器更合算?
17.
阅读下列一段文字,然后回答下列问题.
已知在平面内两点P1x1y1)、P2x2y2),其两点间的距离.例如P1(2,-4)、P2(7,8),其两点间的距离,同时,当两点所在的直线再坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可化简为|x2x1|或|y2y1|.
(1)已知A(2,4)、B(-3,-8),试求AB两点间的距离____.
(2)已知MN在平行于y轴的直线上,点M的纵坐标为4,点N的纵坐标为-1,试求MN 两点的距离为   
(3)已知一个三角形各顶点坐标为D(1,6)、E(-2,2)、F(4,2),你能判定此三角形的形状吗?说明理由.
(4)在(3)的条件下,平面直角坐标中,在x轴上找一点P,使PD+PF的长度最短,求出点P的坐标及PD+PF的最短长度.
18.
如图所示,点B,E分别在AC,DF上,BD,CE均与AF相交,∠1=∠2,∠C=∠D,求证:∠A=∠F.
19.
探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”.
(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;
(2)请你直接利用以上结论,解决以下三个问题:
①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XYXZ恰好经过点BC,∠A=40°,则∠ABX+∠ACX=    °;
②如图3,DC平分∠ADBEC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;
③如图4,∠ABD,∠ACD的10等分线相交于点G1G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.
20.
探究与发现:如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这样图形叫做“规形图”,

(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;
(2)请你直接利用以上结论,解决以下三个问题:
①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=40°,则∠ABX+∠ACX等于多少度; 
②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数; 
③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.
21.
如图:在平面直角坐标系中A(−3,2),B(−4,−3),C(−1,−1).

(1)在图中作出△ABC关于y轴对称图形△A1B1C1
(2)写出A1B1C1的坐标分别是A1(___,___),B1(___,___),C1(___,___);
(3)△ABC的面积是___.
试卷分析
  • 【1】题量占比

    单选题:(8道)

    填空题:(4道)

    解答题:(9道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:3

    5星难题:0

    6星难题:7

    7星难题:0

    8星难题:3

    9星难题:8