1.解答题- (共3题)
1.
图中给出一段“S”形单行盘山公路的示意图,弯道1、弯道2可看作两个不同水平面上的圆弧,圆心分别为O1、O2,弯道中心线半径分别为r1=10 m、r2=20 m,弯道2比弯道1高h=12 m,有一直道与两弯道圆弧相切.质量m=1 200 kg的汽车通过弯道时做匀速圆周运动,路面对轮胎的最大径向静摩擦力是车重的1.25倍,行驶时要求汽车不打滑.(sin 37°=0.6,sin 53°=0.8,g取10 m/s2)

(1)求汽车沿弯道1中心线行驶时的最大速度v1;
(2)汽车以v1进入直道,以P=30 kW的恒定功率直线行驶了t=8.0 s,进入弯道2,此时速度恰为通过弯道2中心线的最大速度,求直道上除重力以外的阻力对汽车做的功;
(3)汽车从弯道1的A点进入,从同一直径上的B点驶离,有经验的司机会利用路面宽度,用最短时间匀速安全通过弯道,设路宽d=10 m,求此最短时间(A、B两点都在轨道的中心线上,计算时视汽车为质点 ).

(1)求汽车沿弯道1中心线行驶时的最大速度v1;
(2)汽车以v1进入直道,以P=30 kW的恒定功率直线行驶了t=8.0 s,进入弯道2,此时速度恰为通过弯道2中心线的最大速度,求直道上除重力以外的阻力对汽车做的功;
(3)汽车从弯道1的A点进入,从同一直径上的B点驶离,有经验的司机会利用路面宽度,用最短时间匀速安全通过弯道,设路宽d=10 m,求此最短时间(A、B两点都在轨道的中心线上,计算时视汽车为质点 ).
2.
如图甲所示,游乐场的过山车可以底朝上在竖直圆轨道上运行,可抽象为图乙所示的模型.倾角为45°的直轨道AB、半径R=10 m的光滑竖直圆轨道和倾角为37°的直轨道EF.分别通过水平光滑衔接轨道BC、C′E平滑连接,另有水平减速直轨道FG与EF平滑连接,EG间的水平距离l=40 m.现有质量m=500 kg的过山车,从高h=40 m处的A点静止下滑,经BCDC′EF最终停在G点.过山车与轨道AB、EF间的动摩擦因数均为μ1=0.2,与减速直轨道FG间的动摩擦因数μ2=0.75.过山车可视为质点,运动中不脱离轨道,g取10 m/s2.求:


(1)过山车运动至圆轨道最低点C时的速度大小;
(2)过山车运动至圆轨道最高点D时对轨道的作用力;
(3)减速直轨道FG的长度x.(已知sin 37°=0.6,cos 37°=0.8)


(1)过山车运动至圆轨道最低点C时的速度大小;
(2)过山车运动至圆轨道最高点D时对轨道的作用力;
(3)减速直轨道FG的长度x.(已知sin 37°=0.6,cos 37°=0.8)
3.
如图所示是公路上的“避险车道”,车道表面是粗糙的碎石,其作用是供下坡的汽车在刹车失灵的情况下避险.质量m=2.0×103kg的汽车沿下坡行驶,当驾驶员发现刹车失灵的同时发动机失去动力,此时速度表示数v1=36km/h,汽车继续沿下坡匀加速直行l=350m、下降高度h=50m时到达“避险车道”,此时速度表示数v2=72km/h.

(1)求从发现刹车失灵至到达“避险车道”这一过程汽车动能的变化量;
(2)求汽车在下坡过程中所受的阻力;
(3)若“避险车道”与水平面间的夹角为17°,汽车在“避险车道”受到的阻力是在下坡公路上的3倍,求汽车在“避险车道”上运动的最大位移(sin17°≈0.3).

(1)求从发现刹车失灵至到达“避险车道”这一过程汽车动能的变化量;
(2)求汽车在下坡过程中所受的阻力;
(3)若“避险车道”与水平面间的夹角为17°,汽车在“避险车道”受到的阻力是在下坡公路上的3倍,求汽车在“避险车道”上运动的最大位移(sin17°≈0.3).
试卷分析
-
【1】题量占比
解答题:(3道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:2
7星难题:0
8星难题:1
9星难题:0