如图甲所示,游乐场的过山车可以底朝上在竖直圆轨道上运行,可抽象为图乙所示的模型.倾角为45°的直轨道
AB、半径
R=10 m的光滑竖直圆轨道和倾角为37°的直轨道
EF.分别通过水平光滑衔接轨道
BC、
C′
E平滑连接,另有水平减速直轨道
FG与
EF平滑连接,
EG间的水平距离
l=40 m.现有质量
m=500 kg的过山车,从高
h=40 m处的
A点静止下滑,经
BCDC′
EF最终停在
G点.过山车与轨道
AB、
EF间的动摩擦因数均为
μ1=0.2,与减速直轨道
FG间的动摩擦因数
μ2=0.75.过山车可视为质点,运动中不脱离轨道,
g取10 m/s
2.求:


(1)过山车运动至圆轨道最低点
C时的速度大小;
(2)过山车运动至圆轨道最高点
D时对轨道的作用力;
(3)减速直轨道
FG的长度
x.(已知sin 37°=0.6,cos 37°=0.8)