2017年初中毕业升学考试(上海卷)数学(带解析)

适用年级:初三
试卷号:131535

试卷类型:中考真题
试卷考试时间:2017/8/1

1.单选题(共5题)

1.
下列方程中,没有实数根的是(  )
A.x2﹣2x=0B.x2﹣2x﹣1=0C.x2﹣2x+1 =0D.x2﹣2x+2=0
2.
数据2、5、6、0、6、1、8的中位数和众数分别是()
A.0和6B.0和8C.5和6D.5和8
3.
如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()
A.k>0,且b>0B.k<0,且b>0C.k>0,且b<0D.k<0,且b<0
4.
已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是(   )
A.∠BAC=∠DCAB.∠BAC=∠DACC.∠BAC=∠ABDD.∠BAC=∠ADB
5.
下列图形中,既是轴对称又是中心对称图形的是(  )
A.菱形B.等边三角形C.平行四边形D.等腰梯形

2.填空题(共5题)

6.
如果反比例函数y=(k是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y的值随x值的增大而____.(填“增大”或“减小”)
7.
一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是_____.
8.
不等式组的解集是________.
9.
计算:2a﹒a2=________.
10.
方程=1的解是_______.

3.解答题(共4题)

11.
甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.
甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.
乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.
(1)求如图所示的y与x的函数解析式:(不要求写出定义域);
(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.
12.
如图,已知⊙O的半径长为1,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.
(1)求证:△OAD∽△ABD;
(2)当△OCD是直角三角形时,求B、C两点的距离;
(3)记△AOB、△AOD、△COD 的面积分别为S1、S2、S3,如果S2是S1和S3的比例中项,求OD的长.
13.
计算:+(﹣1)2+(﹣1
14.
已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.
(1)求证:四边形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.
试卷分析
  • 【1】题量占比

    单选题:(5道)

    填空题:(5道)

    解答题:(4道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:5

    7星难题:0

    8星难题:0

    9星难题:9