题干

如图1,在锐角△ABC中,AB=5,tanC=3,BD⊥AC于点D,BD=3,点P从点A出发,以每秒1个单位长度的速度沿AB向终点B运动,过点P作PE∥AC交边BC于点E,以PE为边作Rt△PEF,使∠EPF=90°,点F在点P的下方,且EF∥A
A.设△PEF与△ABD重叠部分图形的面积为S(平方单位)(S>0),点P的运动时间为t(秒)(t>0).

(1)直接写出线段AC的长为
(2)当△PEF与△ABD重叠部分图形为四边形时,求S与t之间的函数关系式,并写出t的取值范围.
(3)若边EF所在直线与边AC交于点Q,连结PQ,如图2,
①当PQ将△PEF的面积分成1:2两部分时,求AP的长.
②直接写出△ABC的某一顶点到P、Q两点距离相等时t的值.
上一题 下一题 0.4难度 解答题 更新时间:2019-10-07 05:11:23

答案(点此获取答案解析)