如图,已知:在△
ABC中,
AC=
BC=4,∠
ACB=120°,将一块足够大的直角三角尺
PMN(∠
M=90°,∠
MPN=30°)按如图放置,顶点
P在线段
AB上滑动,三角尺的直角边
PM始终经过点
C,并且与
CB的夹角∠
PCB=α,斜边
PN交
AC于点D.
(1)当
PN∥
BC时,判断△
ACP的形状,并说明理由;
(2)点
P在滑动时,当
AP长为多少时,△
ADP与△
BPC全等,为什么?
(3)点
P在滑动时,△
PCD的形状可以是等腰三角形吗?若可以,请求出夹角α的大小;若不可以,请说明理由.
