题干

阅读下列材料,然后解决问题:
截长法与补短法在证明线段的和、差、倍、分等问题中有着广泛的应用.具体的做法是在某条线段上截取一条线段等于某特定线段,或将某条线段延长,使之与某特定线段相等,再利用全等三角形的性质等有关知识来解决数学问题.
(1)如图①,在△ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE,把AB、AC、2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是
(2)问题解决:
如图②,在△ABC中,DBC边上的中点,DEDF于点DDEAB于点EDFAC于点F,连接EF,求证:BECFEF
(3)问题拓展:
如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交ABADEF两点,连接EF,探索线段BEDFEF之间的数量关系,并加以证明.
上一题 下一题 0.4难度 解答题 更新时间:2018-02-12 02:54:01

答案(点此获取答案解析)