题干

如图1,已知正方形ABCD的对角线AC、BD交于点O,E是AC上一点,AG⊥BE,垂足为G,AG与BO相交于F,求证OE=OF.

证明:∵四边形ABCD是正方形,∴∠BOE=∠AOF=,且OA=O
A.又∵AG⊥BE,∴∠1+∠3=.即∠1=∠2.∴Rt△BOE≌Rt△AOF.∴OE=OF.
问题:(1)根据你的理解,上述证明思路的核心,是利用 ,使问题得以解决.而证明过程中的关键是证明出  
(2)若上述命题改为:点E在AC的延长线上,AG⊥BE交EB的延长线于点G,延长线AG交DB的延长线于点F,如图2所示,其他条件不变,证明OE=OF.
上一题 下一题 0.65难度 解答题 更新时间:2019-03-10 11:44:01

答案(点此获取答案解析)