题干

人们在长期的数学实践中总结了许多解决数学问题的方法,形成了许多光辉的数学想法,其中转化思想是中学教学中最活跃,最实用,也是最重要的数学思想,例如将不规则图形转化为规则图形就是研究图形问题比较常用的一种方法。
问题提出:求边长分别为、的三角形面积。
问题解决:
在解答这个问题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出边长分别为
的格点三角形(如图),是角边为1和2的直角三角形斜边,是直角边分别为1和3的直角三角形的斜边,是直角边分别为2和3的直角三角形斜边,用一个大长方形的面积减去三个直角三角形的面积,这样不需求的高,而借用网格就能计算它的面积.

(1)请直接写出图①中的面积为____________.
(2)类比迁移:求边长分别为的三角形面积(请利用图②的正方形网格画出相应的,并求出它的面积)
(3)思维拓展:求边长分别为,的三角形的面积
(4)如图(3),已知,以为边向外作正方形,正方形,连接,若,则六边形的面积是_________.
上一题 下一题 0.4难度 解答题 更新时间:2019-05-15 11:37:53

答案(点此获取答案解析)