我们定义:如图1,在△ABC中,把AB绕点A按顺时针方向旋转α(0°<α<180°)得到AB′,把AC绕点A按逆时针方向旋转β得到AC′,连接B′C′,当α+β=180°时,我们称△AB′C′是△ABC的“旋补三角形”,△AB′C′边B′C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.

(1)特例感知:在图2、图3中,△AB′C′是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.
①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=______BC;
②如图3,当∠BAC=90°,BC=8时,则AD长为______.
(2)精确作图:如图4,已知在四边形ABCD内部存在点P,使得△PDC是△PAB的“旋补三角形”(点D的对应点为点A,点C的对应点为点B),请用直尺和圆规作出点P(要求:保留作图痕迹,不写作法和证明)
(3)猜想论证:在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.