刷题首页
题库
题干
完成下面的证明:如图,
AB
∥
CD
∥
GH
,
EG
平分∠
BEF
,
FG
平分∠
EFD
,
求证:∠
EGF
=90°.
证明:∵
AB
∥
GH
(已知),
∴∠1=∠3(
),
又∵
CD
∥
GH
(已知),
∴
(两直线平行,内错角相等)
∵
AB
∥
CD
(已知),
∴∠
BEF
+
=180°(两直线平行,同旁内角互补)
∵
EG
平分∠
BEF
(已知),
∴∠1=
(角平分线定义),
又∵
FG
平分∠
EFD
(已知),
∴∠2=
∠
EFD
(
),
∴∠1+∠2=
(
+∠
EFD
)
∴∠
l
+∠2=90°,
∴∠3+∠4=90°(等量代换),
即∠
EGF
=90°.
上一题
下一题
0.65难度 解答题 更新时间:2019-04-20 08:09:58
答案(点此获取答案解析)
小学学科试题库
小学语文
小学数学
小学英语
小学科学
小学道德与法治
初中学科试题库
初中数学
初中语文
初中英语
初中物理
初中化学
初中生物
初中政治
初中历史
初中地理
初中历史与社会
初中科学
初中信息技术
高中学科试题库
高中语文
高中数学
高中英语
高中物理
高中化学
高中生物
高中政治
高中历史
高中地理
高中信息技术