题干

完成下面的证明:如图,ABCDGHEG平分∠BEFFG平分∠EFD
求证:∠EGF=90°.
证明:∵ABGH(已知),
∴∠1=∠3(    ),
又∵CDGH(已知),
    (两直线平行,内错角相等)
ABCD(已知),
∴∠BEF+    =180°(两直线平行,同旁内角互补)
EG平分∠BEF(已知),
∴∠1=     (角平分线定义),
又∵FG平分∠EFD(已知),
∴∠2=EFD    ),
∴∠1+∠2=    +∠EFD
∴∠l+∠2=90°,
∴∠3+∠4=90°(等量代换),
即∠EGF=90°.
上一题 下一题 0.65难度 解答题 更新时间:2019-04-20 08:09:58

答案(点此获取答案解析)