题干

十八世纪瑞士数学家欧拉证明了简单多面体中顶点数()、面数()、棱数()之间存在的一个有趣的关系式,被称为欧拉公式,请你观察下列几种简单多面体模型,解答下列问题:

(1)根据上面多面体模型,完成表格中的空格;
多面体
顶点数(
面数(
棱数(
四面体


 
长方体



正八面体
 


正十二面体



 
(1)你发现顶点数()、面数()、棱数()之间存在的关系式是_______.
(2)正十二面体有个顶点,那它有______条棱;
(3)一个多面体的面数比顶点数大,且有条棱,则这多面体的顶点数是______;
(4)某个玻璃饰品的外形是简单多面体,它的外表是由三角形和八边形两种多边形拼接而成,且有个顶点,每个顶点处都有条棱,设该多面体表面三角形的个数为个,八边形的个数为个,求的值.
上一题 下一题 0.4难度 解答题 更新时间:2017-03-20 02:54:11

答案(点此获取答案解析)