如图,直线
AB、
CD相交于
O,
OD平分∠
AOF,
OE⊥
CD于点
O,∠1=50°,求∠
BOC、∠
BOF的度数.

解:∵
OE⊥
CD( ),
∴∠
DOE=_____°( ),
∵∠1=50°( ),
∴∠
AOD=∠________-∠________=________°,
∵∠
BOC与∠
AOD为_______角(____________),
∴∠
BOC=∠________=∠_________°(_____________),
∵
OD平分∠
AOF(______________),
且∠
AOD=____________°(______________),
∴∠
AOF=2∠__________=________°( ),
∵∠
BOF+∠
AOF=______°( ),
∴∠
BOF=______°-∠
AOF=_________°.