题干

如图所示,光滑的水平导轨MN 右端 N 处与水平传送带齐平,传送带两端长度L=4m,皮带轮沿顺时针方向转动,带动皮带以恒定速率v=3m/s 匀速传动,三个质量均为m=l kg 的滑块ABC 置于水平导轨上,开始时滑块BC 之间用细绳相连,其间有一压缩的轻弹簧,处于静止状态。滑块 A 以初速度v0=2 m/s 向B 运动,A B 正碰后黏合在一起,碰撞时间极短,因碰撞,导致连接BC 的细绳受扰动而突然断开,弹簧伸展,从而使C 与AB 分离,滑块C 脱离弹簧后以速度 vc=2 m/s 滑上传送带,并从右端滑出落至地面上的P 点。已知滑块C 与传送带之间的动摩擦因数μ=0.2,重力加速度 g 取10m/s2

(1)求滑块C 从传送带右端滑出时的速度大小;
(2)求滑块BC 用细绳相连时弹簧的弹性势能EP
(3)只要滑块A 与滑块B 碰撞前的速度v0 不超过某一最大值,滑块C 都能落至P 点.当滑块 A 的初速度为该最大值时,滑块C 滑上传送带时速度vC 多大?滑块C 与传送带间因摩擦产生的热量Q 多大?
(4)求第(3)问中滑块A 与滑块B 碰撞前的速度v0 的最大值
上一题 下一题 0.85难度 解答题 更新时间:2019-05-06 03:58:40

答案(点此获取答案解析)