如图,在平面直角坐标系中,点A的坐标为(﹣1,0),点B的坐标为(4,0),经过点A点B抛物线y=x2+bx+c与y轴交于点C.
设A是由有限个正整数组成的集合,若存在两个集合B,C满足:
①B∩C=∅;
②B∪C=A;
③B的元素之和等于C的元素之和.
则称集合A“可均分”,否则称A“不可均分”.
(Ⅰ)判断集合M={1,3,9,27,…,3n}(n∈N*)是否“可均分”,并说明理由;
(Ⅱ)求证:集合A={2015+1,2015+2,…,2015+93}“可均分”;
(Ⅲ)求出所有的正整整k,使得A={2015+1,2015+2,…,2015+k}“可均分”
俗话说“一母生九子,连母十个样”,体现了生物多样性的哪个层次( )