如图所示,在平面直角坐标系中,抛物线y=ax
2+bx+c经过点A(0,4),B(-2,0),C(6,0).过点A作AD∥x轴交抛物线于点D,过点D作DE⊥x轴,垂足为E.M是四边形OADE的对角线的交点,点F在y轴的负半轴上,坐标为(0,-2).
(1)求抛物线所对应的函数表达式,并直接写出四边形OADE的形状;
(2)当点P,Q分别从C,F两点同时出发,均以每秒1个单位长度的速度沿CB,FA的方向运动,点P运动到点O时P,Q两点同时停止运动.设运动时间为t秒,在运动过程中,以P,Q,O,M四点为顶点的四边形的面积为S,求出S与t之间的函数表达式,并写出自变量的取值范围.
