题干

已知抛物线l:y=(x﹣h)2﹣4(h为常数)   
(1)如图1,当抛物线l恰好经过点P(1,﹣4)时,l与x轴从左到右的交点为A、B,与y轴交于点C.

①求l的解析式,并写出l的对称轴及顶点坐标.
②在l上是否存在点D,使SABD=SABC , 若存在,请求出D点坐标,若不存在,请说明理由.
③点M是l上任意一点,过点M做ME垂直y轴于点E,交直线BC于点D,过点D作x轴的垂线,垂足为F,连接EF,当线段EF的长度最短时,求出点M的坐标.   
(2)设l与双曲线y=有个交点横坐标为x0,且满足3≤x0≤5,通过l位置随h变化的过程,直接写出h的取值范围.
上一题 下一题 0.15难度 解答题 更新时间:2018-06-27 09:09:46

答案(点此获取答案解析)