如图,等边△ABC内接于⊙O,P是弧AB上任一点(点P不与A、B重合),连AP,BP,过C作CM∥BP交PA的延长线于点M,
(1)求证:△PCM为等边三角形;
(2)若PA=1,PB=2,求梯形PBCM的面积.
(1)证明:作PH⊥CM于H,
∵△ABC是等边三角形,
∴∠APC=∠ABC=60°,
∠BAC=∠BPC=60°,
∵CM∥BP,
∴∠BPC=∠PCM=60°,
∴△PCM为等边三角形;
(2)解:∵△ABC是等边三角形,△PCM为等边三角形,
∴∠PCA+∠ACM=∠BCP+∠PCA,
∴∠BCP=∠ACM,
在△BCP和△ACM中,