如图所示,在xOy平面的第Ⅱ象限的某一区域有垂直于纸面向外的匀强磁场B1,磁场区域的边界为半圆形。有一质量m =10
-12kg、带正电q =10
-7C的a粒子从O点以速度v
0 =10
5m/s,沿与y轴正方向成
θ=30°射入第Ⅱ象限,经磁场偏转后,从
y轴上的
P点垂直于
y轴射出磁场,进入第Ⅰ象限,
P点纵坐标为
yP =3m,
y轴右侧和垂直于
x轴的虚线左侧间有平行于
y轴指向
y轴负方向的匀强电场,
a粒子将从虚线与
x轴交点
Q进入第Ⅳ象限,
Q点横坐标

m,虚线右侧有垂直纸面向里的匀强磁场
B2,其磁感应强度大小
B2=
B1 。不计粒子的重力,求:
(1)匀强电场的电场强度
E的大小(保留三位有效数字);
(2)半圆形磁场磁感应强度
B1的大小和半圆形磁场区域
B1的最小面积
S;
(3)若在
a粒子刚进入磁场
B1的同时,有另一带电量为-
q的
b粒子,从
y轴上的
M点(图中未画)以速度
v0垂直于y轴射入电场,a、b粒子将在B
2区域迎面相遇于N点,求N点的坐标.(不计a、b粒子间的相互作用力)
