抛物线y=x
2+(2t﹣2)x+t
2﹣2t﹣3与x轴交于A、B两点(A在B左侧),与y轴交于点C.

(1)如图1,当t=0时,连接AC、BC,求△ABC的面积;
(2)如图2,在(1)的条件下,若点P为在第四象限的抛物线上的一点,且∠PCB+∠CAB=135°,求P点坐标;
(3)如图3,当﹣1<t<3时,若Q是抛物线上A、C之间的一点(不与A、C重合),直线QA、QB分别交y轴于D、E两点.在Q点运动过程中,是否存在固定的t值,使得CE=2CD.若存在,求出t值;若不存在,请说明理由.