题干

如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.

(1)求证:CE=AD;

(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;

(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.

上一题 下一题 0.0难度 选择题 更新时间:2018-05-07 10:42:09

答案(点此获取答案解析)

证明:(1)∵DE⊥BC,

∴∠DFB=90°,

∵∠ACB=90°,

∴∠ACB=∠DFB,

∴AC∥DE,

∵MN∥AB,即CE∥AD,

∴四边形ADEC是平行四边形,

∴CE=AD;

(2)解:四边形BECD是菱形,

理由是:∵D为AB中点,

∴AD=BD,

∵CE=AD,

∴BD=CE,

∵BD∥CE,

∴四边形BECD是平行