题干

如图,用一根长为L=1m的细线,一端系一质量为m=1kg的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=370,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T.求 , , 计算结果可用根式表示):
 
(1)若要小球离开锥面,则小球的角速度 至少为多大?
(2)若细线与竖直方向的夹角为600,则小球的角速度ω1为多大?
(3)细线的张力T与小球匀速转动的角速度ω有关,当ω的取值范围在0到ω1之间时,请通过计算求解T与ω2的关系,并在图坐标纸上作出T-ω2的图象,标明关键点的坐标值.
上一题 下一题 0.4难度 解答题 更新时间:2018-05-10 11:23:06

答案(点此获取答案解析)