从甲地到乙地,先是一段上坡路,然后是一段平路,小明骑车从甲地出发,到达乙地后休息一段时间,然后原路返回甲地.假设小明骑车在上坡、平路、下坡时分别保持匀速前进,已知小明骑车上坡的速度比平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km,设小明出发xh后,到达离乙地ykm的地方,图中的折线ABCDEF表示y与x之间的函数关系.
(1)小明骑车在平路上的速度为多少km/h,他在乙地休息了多少小时.
(2)分别求线段AB、EF所对应的函数关系式.
(3)从甲地到乙地经过丙地,如果小明两次经过丙地的时间间隔为0.85h,求丙地与甲地之间的路程.
解:(1)小明骑车上坡的速度为:(6.5﹣4.5)÷0.2=10(km/h),
小明平路上的速度为:10+5=15(km/h),
小明下坡的速度为:15+5=20(km/h),
小明平路上所用的时间为:2(4.5÷15)=0.6h,
小明下坡所用的时间为:(6.5﹣4.5)÷20=0.1h
所以小明在乙地休息了:1﹣0.1﹣0.6﹣0.2=0.1(h).
故答案为:15,0.1;
(2)由题意可知:上坡的速度为10k