题干

如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:

(Ⅰ)BE=EC;

(Ⅱ)AD•DE=2PB2

上一题 下一题 0.0难度 选择题 更新时间:2019-08-21 04:09:48

答案(点此获取答案解析)

证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,

∵PC=2PA,D为PC的中点,

∴PA=PD,

∴∠PAD=∠PDA,

∵∠PDA=∠CDE,

∴∠OEA+∠CDE=∠OAE+∠PAD=90°,

∴OE⊥BC,

∴E是BC