题干

如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC、BC于点D、E,BC的延长线于⊙O的切线AF交于点F.
(1)求证:∠ABC=2∠CAF;
(2)若AC=210,CE:EB=1:4,求CE的长.
上一题 下一题 0.0难度 选择题 更新时间:2016-09-07 09:02:12

答案(点此获取答案解析)

(1)证明:如图,连接BD.

∵AB为⊙O的直径,

∴∠ADB=90°,

∴∠DAB+∠ABD=90°.

∵AF是⊙O的切线,

∴∠FAB=90°,

即∠DAB+∠CAF=90°.

∴∠CAF=∠ABD.

∵BA=BC,∠ADB=90°,

∴∠ABC=2∠ABD.

∴∠ABC=2∠CAF.


(2)解:如图,连接AE,

∴∠AEB=90°