如图,点B是以AC为直径的圆周上的一点,AB=BC,AC=4,PA=AB,PA⊥平面ABC,点E为PB的中点.
(Ⅰ)求证:平面AEC⊥平面PBC;
(Ⅱ)求直线AE与平面PAC所成角的大小.
证明:(Ⅰ)∵PA⊥⊙O所在平面,且BC为⊙O的弦,
∴PA⊥BC
∵AB为⊙O的直径,
∴BC⊥AC.
而PA∩AC=A.
∴BC⊥面PAC,
∵AE⊂平面PAC,∴BC⊥AE,
∵PA=AB,PA⊥平面ABC,点E为PB的中点.
∴AE⊥PB,PB∩BC=B,
∴AE⊥平面PBC.
∵AE⊂平面AEC,
∴平面AEC⊥平面PBC.
(Ⅱ)作BO⊥平面AP