题干

直三棱柱ABC﹣A1B1C1 中,AA1=AB=AC=1,E,F分别是CC1、BC 的中点,AE⊥A1B1,D为棱A1B1上的点.
(1)证明:DF⊥AE;
(2)是否存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为1414
?若存在,说明点D的位置,若不存在,说明理由.

上一题 下一题 0.0难度 选择题 更新时间:2016-01-18 04:57:15

答案(点此获取答案解析)

(1)证明:∵AE⊥A1B1,A1B1∥AB,∴AE⊥AB,

又∵AA1⊥AB,AA1⊥∩AE=A,∴AB⊥面A1ACC1

又∵AC⊂面A1ACC1,∴AB⊥AC,

以A为原点建立如图所示的空间直角坐标系A﹣xyz,

则有A(0,0,