已知m≥0,函数f(x)=2|x﹣1|﹣|2x+m|的最大值为3.
(Ⅰ)求实数m的值;
(Ⅱ)若实数a,b,c满足a﹣2b+c=m,求a2+b2+c2的最小值.
解:(Ⅰ)f(x)=2|x﹣1|﹣|2x+m|=|2x﹣2|﹣|2x+m|≤|(2x﹣2)﹣(2x+m)|=|m+2|
∵m≥0,∴f(x)≤|m+2|=m+2,当x=1时取等号,
∴f(x)max=m+2,又f(x)的最大值为3,∴m+2=3,即m=1.
(Ⅱ)根据柯西不等式得:(a2+b2+c2)12+(﹣2)2+12
如图,△ABC的面积是59,YZ=2CZ,XZ=3AX,XY=4BY,那么△XYZ的面积是( )