如图,在平面直角坐标系内,点 O 为坐标原点,点 A 在 x 轴负半轴上,点 B、C 分别在 x 轴、y 轴正半轴上,且 OB=2OA,OB﹣OC=OC﹣OA=2. (1)求点 C 的坐标; (2)点 P 从点 A 出发以每秒 1 个单位的速度沿 AB 向点 B 匀速运动,同时点 Q 从点 B 出发 以每秒 3 个单位的速度沿 BA 向终点 A 匀速运动,当点 Q 到达终点 A 时,点 P、Q 均停止运 动,设点 P 运动的时间为 t 秒(t>0),线段 PQ 的长度为 y,用含 t 的式子表示 y,并写出 相应的 t 的范围; (3)在(2)的条件下,过点 P 作 x 轴的垂线 PM,PM=PQ,是否存在 t 值使点 O 为 PQ 中 点?若存在求 t 值并求出此时三角形 CMQ 的面积;若不存在,请说明理由.