题干

将三项式(x2+x+1)n展开,当n=0,1,2,3,…时,得到以下等式:

(x2+x+1)0=1

(x2+x+1)1=x2+x+1

(x2+x+1)2=x4+2x3+3x2+2x+1

(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1

观察多项式系数之间的关系,可以仿照杨辉三角构造如图所示的广义杨辉三角形,其构造方法为:第0行为1,以下各行每个数是它头上与左右两肩上3数(不足3数的,缺少的数计为0)之和,第k行共有2k+1个数.若在(1+ax)(x2+x+1)5的展开式中,x8项的系数为67,则实数a值为____

上一题 下一题 0.0难度 选择题 更新时间:2016-09-21 03:55:31

答案(点此获取答案解析)

2615