已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.
(1)如图1,当点D在边BC上时,
①求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;
(2)如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC是否成立?请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;
(3)如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.
解:(1)①证明:∵△ABC为等边三角形,
∴AB=AC,∠BAC=60°,
∵∠DAF=60°,
∴∠BAC=∠DAF,
∴∠BAD=∠CAF,
∵四边形ADEF是菱形,∴AD=AF,
在△ABD和△ACF中
AB=AC,∠BAD=∠CAF,AD=AF,
∴△ABD≌△ACF,
∴∠ADB=∠AFC,
②结论:∠AFC=∠ACB+∠DAC成立.
(2)结论∠AFC=∠