刷题首页
题库
题干
在平面直角坐标系中,二次函数y=ax
2
+bx﹣8的图象与x轴交于A、B两点,与y轴交于点C,直线y=kx+
(k≠0)经过点A,与抛物线交于另一点R,已知OC=2OA,OB=3O
A.
(1)求抛物线与直线的解析式;
(2)如图1,若点P是x轴下方抛物线上一点,过点P做PH⊥AR于点H,过点P做PQ∥x轴交抛物线于点Q,过点P做PH′⊥x轴于点H′,K为直线PH′上一点,且PK=2
PQ,点I为第四象限内一点,且在直线PQ上方,连接IP、IQ、IK,记l=
PQ,m=IP+IQ+IK,当l取得最大值时,求出点P的坐标,并求出此时m的最小值.
(3)如图2,将点A沿直线AR方向平移13个长度单位到点M,过点M做MN⊥x轴,交抛物线于点N,动点D为x轴上一点,连接MD、DN,再将△MDN沿直线MD翻折为△MDN′(点M、N、D、N′在同一平面内),连接AN、AN′、NN′,当△ANN′为等腰三角形时,请直接写出点D的坐标.
上一题
下一题
0.15难度 解答题 更新时间:2019-04-24 04:05:42
答案(点此获取答案解析)
小学学科试题库
小学语文
小学数学
小学英语
小学科学
小学道德与法治
初中学科试题库
初中数学
初中语文
初中英语
初中物理
初中化学
初中生物
初中政治
初中历史
初中地理
初中历史与社会
初中科学
初中信息技术
高中学科试题库
高中语文
高中数学
高中英语
高中物理
高中化学
高中生物
高中政治
高中历史
高中地理
高中信息技术