题干

已知函数f(x)=x3+bx2+ax+d的图象过点P(0,2),且在点M(﹣1,f(﹣1))处的切线方程为6x﹣y+7=0.

(Ⅰ)求函数y=f(x)的解析式;

(Ⅱ)求函数y=f(x)的单调区间.

上一题 下一题 0.0难度 选择题 更新时间:2019-11-26 03:18:08

答案(点此获取答案解析)

解:(Ⅰ)∵f(x)的图象经过P(0,2),∴d=2,

∴f(x)=x3+bx2+ax+2,f'(x)=3x2+2bx+a.

∵点M(﹣1,f(﹣1))处的切线方程为6x﹣y+7=0

∴f'(x)|x=﹣1=3x2+2bx+a|x=﹣1=3﹣2b+a=6①,

还可以得到,f(﹣1