证明:∵AB切⊙O于点A,∴∠CAB=90°,又∵AC是直径,∴∠P=90°∴∠CAB=∠P
问题拓展:若AC不经过圆心O(如图3),该结论:弦切角∠CAB=∠P还成立吗?请说明理由.
知识运用:如图4,AD是△ABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB、AC分别相交于E、F.求证:EF∥BC.
如图3,连接AO并延长交⊙O于点D,连接CD,
则∠D=∠P,
∵AD是直径,
∴∠D+∠CAD=90°,
又∵AB切圆于点A,
∴∠CAB+∠CAD=90°,
∴∠CAB=∠CDA,
而∠CDA=∠P,
∴∠CAB=∠P;
知识运用:如图4,连接DF,
∵AD是△ABC中∠BAC的平分线,
∴∠E