题干

设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.
(Ⅰ)求g(x)的单调区间;
(Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;
(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且
p
q
∈[1,x0)∪(x0,2],满足|
p
q
﹣x0|≥
1
A
q
4
上一题 下一题 0.0难度 选择题 更新时间:2017-08-07 05:54:39

答案(点此获取答案解析)

(Ⅰ)解:由f(x)=2x4+3x3﹣3x2﹣6x+a,可得g(x)=f′(x)=8x3+9x2﹣6x﹣6,

进而可得g′(x)=24x2+18x﹣6.令g′(x)=0,解得x=﹣1,或x= 14