如图1,在正方形ABCD中,点E为BC上一点,连接DE,把△DEC沿DE折叠得到△DEF,延长EF交AB于G,连接DG.
(1) 求证:∠EDG=45°.
(2)如图2,E为BC的中点,连接BF.
①求证:BF∥DE;
②若正方形边长为6,求线段AG的长.
(3) 当BE︰EC= 时,DE=DG.
(1)证明:如图:
∵四边形ABCD是正方形,
∴DC=DA.∠A=∠B=∠C=∠ADC = 90°.
∵△DEC沿DE折叠得到△DEF,
∴∠DFE=∠C,DC=DF,∠1=∠2,
∴∠DFG=∠A,DA=DF,
又∵DG=DG,
∴△DGA≌△DGF,
∴∠3=∠4,
∴∠EDG=∠3+∠2={#