题干

如图,△ABC中,∠C=90°,点G是线段AC上的一动点(点G不与A、C重合),以AG为直径的⊙O交AB于点D,直线EF垂直平分BD,垂足为F,EF交BC于点E,连结DE.
(1)求证:DE是⊙O的切线;
(2)若cosA=
1
2
,AB=83,AG=23,求BE的长;
(3)若cosA=
1
2
,AB=83,直接写出线段BE的取值范围.
上一题 下一题 0.0难度 选择题 更新时间:2019-11-19 10:45:35

答案(点此获取答案解析)

(1)证明:连接OD,如图,∵△ABC中,∠C=90°,∴∠A+∠B=90°,∵直线EF垂直平分BD,∴ED=EB,∴∠B=∠EDB,∵OA=OD,∴∠A=∠ODA,∴∠ODA+∠EDB=90°,∴∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:连接GD,∵AG为直径,∴∠ADG=90°,∵cosA=
1
2
,∴∠A=6