(Ⅰ)求证:AB∥EF;
(Ⅱ)若PA=PD=AD,且平面PAD⊥平面ABCD,求平面PAF与平面AFE所成的锐二面角的余弦值.
又因为AB⊄面PCD,CD⊂面PCD,所以AB∥面PCD.
又因为A,B,E,F四点共面,且平面ABEF∩平面PCD=EF,
所以AB∥EF.
解:(Ⅱ)取AD中点G,连接PG,GB.
因为PA=PD,所以PG⊥AD.
又因为平面PAD⊥平面ABCD,
且平面PAD∩平面ABCD=AD,
所以PG⊥平面ABCD.所以PG⊥GB.
在菱形ABCD中,
如图,已知RtΔABC中,∠ACB=90°,AC= 4,BC=3,以AB边所在的直线为轴,将ΔABC旋转一周,则所得几何体的表面积是( ).