如图,在⊙O中,AC与BD是圆的直径,BE⊥AC,CF⊥BD,垂足分别为E、F
(1)四边形ABCD是什么特殊的四边形?请判断并说明理由;
(2)求证:BE=CF.
解(1):四边形ABCD是矩形.理由如下:
∵AC与BD是圆的直径,
∴∠ABC=∠ADC=90°,∠BAD=∠BCD=90°,
∴四边形ABCD是矩形;
(2)证明:∵BO=CO,
又∵BE⊥AC于E,CF⊥BD于F,
∴∠BEO=∠CFO=90°.
在△BOE和△COF中,
定义在R上的奇函数f(x)对任意x∈R都有f(x)=f(x+4),当 x∈-2,0时,f(x)=2x,则f(2012)-f2011的值为( )