题干

(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;

(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;
(3)运用(1)(2)解答中所积累的经验和知识,完成下题:
如图3,在直角梯形ABCD中,AD∥BC,(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.

上一题 下一题 0.0难度 选择题 更新时间:2013-06-17 09:20:43

答案(点此获取答案解析)

(1)证明:∵四边形是ABCD正方形,
∴BC=CD,∠B=∠CDF=90°,
∵BE=DF,∴△CBE≌△CDF(SAS).
∴CE=CF.
(2)证明:如图①,延长AD至F,使DF=BE,连接CF.

由(1)知△CBE≌△CDF,
∴∠BCE=∠DCF.
∴∠BCE+∠ECD=∠DCF+∠ECD,
即∠