如图,△ABC是直角三角形,∠ABC=90°,以AB为直径的圆O交AC于点E,点D是BC边的中点,连接OD交圆O于点M.
(1)求证:O、B、D、E四点共圆;
(2)求证:2DE2=DM•AC+DM•AB.
解:(1)连接BE、OE,则
∵AB为圆0的直径,∴∠AEB=90°,得BE⊥EC,
又∵D是BC的中点,
∴ED是Rt△BEC的中线,可得DE=BD.
又∵OE=OB,OD=OD,∴△ODE≌△ODB.
可得∠OED=∠OBD=90°,
因此,O、B、D、E四点共圆;
(2)延长DO交圆O于点H,
∵DE⊥OE,OE是半径,∴DE为圆O的切线.
可得DE2=DM•DH=