题干

已知抛物线yn=-(x-an)2+an(n为正整数,且0<a1<a2<…<an)与x轴的交点为An-1(bn-1,0)和An(bn,0).当n=1时,第1条抛物线y1=-(x-a1)2+a1与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推.

(1) 求a1、b1的值及抛物线y2的解析式;
(2) 抛物线y3的顶点坐标为;依此类推第n条抛物线yn的顶点坐标为用含n的式子表示);所有抛物线的顶点坐标满足的函数关系式
(3) 探究下列结论:
①若用An-1 An表示第n条抛物线被x轴截得的线段的长,则A0A1等于多少?An-1 An等于多少?
②是否存在经过点A1(b1,0)的直线和所有抛物线都相交,且被每一条抛物线截得的线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由.
上一题 下一题 0.0难度 选择题 更新时间:2015-03-14 09:57:06

答案(点此获取答案解析)

解:(1)∵当n=1时,第1条抛物线y1=-(x-a12+a1与x轴的交点为A0(0,0),
∴0=-(0-a12+a1,解得a1=1或a1=0.
由已知a1>0,∴a1=1,
∴y1=-(x-1