题干

如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.

(1)求证:四边形AECD是菱形;

(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.

上一题 下一题 0.0难度 选择题 更新时间:2018-04-25 02:38:07

答案(点此获取答案解析)

证明:(1)∵AB∥CD,即AE∥CD,又∵CE∥AD,∴四边形AECD是平行四边形.∵AC平分∠BAD,∴∠CAE=∠CAD,又∵AD∥CE,∴∠ACE=∠CAD,∴∠ACE=∠CAE,∴AE=CE,∴四边形AECD是菱形;(2)解:△ABC是直角三角形.证法一:∵E是AB中点,∴AE=BE.又∵AE=CE,∴BE=CE,∴∠B=∠BCE,∵∠B+∠BCA+∠BAC=180°,∴2∠BCE+2∠ACE=180°,∴∠BCE+∠ACE=90°.即∠ACB=90°,∴△ABC是直角三角形.证法二:连DE,由