题干

已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足|PQ|=|PA|.

(1)求实数a,b间满足的等量关系;

(2)求线段PQ长的最小值;

(3)若以P为圆心所作的⊙P与⊙O有公共点,试求半径最小值时⊙P的方程.

上一题 下一题 0.0难度 选择题 更新时间:2014-12-17 06:41:10

答案(点此获取答案解析)

解:(1)连接OQ,∵切点为Q,PQ⊥OQ,由勾股定理可得 PQ2=OP2﹣OQ2

由已知PQ=PA,可得 PQ2=PA2,即 (a2+b2)﹣1=(a﹣2)2+(b﹣1)2

化简可得 2a+b﹣3=0.

(2)∵PQ=