①若0°<α<∠BDC,即DF'在∠BDC的内部时,求证:△DP'C∽△DF'B.
②如图3,若点P是CD的中点,△DF'B能否为直角三角形?如果能,试求出此时tan∠DBF'的值,如果不能,请说明理由.
A:解:①若0°<α<∠BDC,即DF'在∠BDC的内部时, ∵∠P′DF′=∠PDF,∴∠P′DF′﹣∠F′DC=∠PDF﹣∠F′DC,∴∠P′DC=∠F′DB,由旋转的性质可知:△DP′F′≌△DPF,∵PF∥BC,∴△DPF∽△DCB,∴△DP′F′∽△DCB∴ ,∴△DP'C∽△DF'B;②当∠F′DB=90°时,如图所示,∵DF′=DF= BD,∴ ,∴tan∠DBF′= ;当∠DBF′=90°,此时DF′是斜边,即DF′>DB,不符合题意;当∠DF′B=90°时,如图所示,∵DF′=DF= BD,∴∠DBF′=30°,∴tan∠DBF′= .
∵∠P′DF′=∠PDF,
∴∠P′DF′﹣∠F′DC=∠PDF﹣∠F′DC,
∴∠P′DC=∠F′DB,
由旋转的性质可知:△DP′F′≌△DPF,
∵PF∥BC,
∴△DPF∽△DCB,
∴△DP′F′∽△DCB
∴